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This communication describes the facile synthesis of tetra-
cyanoresorcin[4]arene and its high and pH dependent affinities 
toward biologically important acetylcholine in the physiological 
pH region.

The biological importance of acetylcholine (neurotransmitter) 
spurs various efforts to construct its synthetic receptors,1 
aiming at developing acetylcholine sensor devices. In 
these aspects, resorcin[4]arenes,2 readily available from the 
acid-catalyzed condensation of resorcinol with aldehydes, 
serve actively as promising building block. Due to their 
concave aromatic structures, electron-rich resorcin[4]arenes 
are especially attractive as very strong synthetic receptors2,3 for 
choline type quaternary ammonium cations with association 
constants which partially exceed the corresponding constants 
of biological systems.3b Some elegant artificial acetylcholine 
receptors1c,e,g based on resorcin[4]arenes have been reported up 
to now, and their affinities toward acetylcholine were elucidated 
by various spectroscopic methods.

As part of our projects to develop sophisticated acetylcholine 
sensor devices which are active under physiological conditions, 
a resorcin[4]arene derivative, tetracyanoresorcin[4]arene 5 
(Scheme 1), carrying strongly electron-withdrawing cyano 
groups at the 2-position of each resorcinol unit, was designed. 
The electron-withdrawing groups enable the phenolic hydroxyl 
groups of resorcin[4]arenes to dissociate in neutral aqueous 
media to afford negatively charged resorcin[4]arenes which can 
interact more strongly with the quaternary ammonium moiety 
of acetylcholine. Herein we describe the facile synthesis of 5 and 
its high and pH dependent affinities toward acetylcholine in the 
physiological pH region.4 This compound, as recently described 
by us,5 possesses pKa’s in the physiological pH region, and thus 
can recognize acetylcholine with the aid of enhanced cation–p 
and electrostatic interactions.

The synthetic route to tetracyanoresorcin[4]arene 56 is out-
lined in Scheme 1. Bromination of resorcin[4]arene 17 with 
N-bromosuccinimide (NBS) in 2-butanone gave 2 in 65% yield, 
according to the reported protocols.8 After O-methylation 
of 2 with methyl iodide in refluxing acetone in 48% yield, 

Rosenmund–von Braun reaction of octamethylated compound 
3 with CuCN in refluxing DMF gave O-octamethylated cyano 
derivative 4 in 38% yield. The structure of 4 was confirmed by 
ESI MS and NMR. It gave an ESI MS peak at m/z 830.5, corres-
ponding to [M + H2O]+. Compared with the corresponding ones 
in 3, the aromatic protons in 4 were shifted to downfield in the 
1H NMR spectrum, compatible with the introduction of more 
strongly electron-withdrawing cyano groups. A newly appeared 
peak at 114 ppm in the 13C NMR spectrum was assignable to the 
resonance of cyano groups. O-Demethylation of 4 was achieved 
by using lithium iodide in refluxing 1 : 1 pyridine–c-collidine to 
afford 5 in 49% yield. The structure of 5 was confirmed by ESI 
MS and NMR. A negative ESI MS spectrum showed the corres-
ponding molecular ion peak at m/z 699.3 ([M − H]−). The NMR 
signals of the aromatic methoxy groups disappeared, revealing 
the complete cleavage of the methyl ether bonds. Only one set 
of resorcin and alkyl parts in the NMR spectra guaranteed the 
formation of the symmetric all-axial conformer.

The pH dependent signaling recognition of acetylcholine by 
5 was assessed by use of pyrene modified pyridinium cation 6 
as a fluorescent probe in physiological pH region (pH 5.0–8.5), 
since the recognition behavior related to neurotransmitters 
proceeds under physiological conditions. The sensing process, 
which is shown in Scheme 2, involves fluorescence quenching of 
6 by 5 and then fluorescence regeneration of 6 by the competi-
tive binding of acetylcholine.1c,d For comparison, the binding of 
acetylcholine to 1 was also investigated in a similar way.

Scheme 1 Synthetic route to tetracyanoresorcin[4]arene 5.

Scheme 2 Sensing mechanism of acetylcholine by 5 in the physio-
logical pH region.

Fig. 1 shows the plots of the relative fluorescence intensity 
(I/I0) of  6 vs. the concentrations of 1 and 5 at pH 8.0. It can 
be seen that 5 exhibited saturation behaviour at a lower [host]/
[guest] ratio than 1 under the same measuring conditions, 
revealing that 5 recognizes 6 more strongly than 1. Analyses 
of the relationship between I/I0 and the host concentrations by 
nonlinear curve fitting methods9 afford the binding constants of 
6 with 5 (Ka1) and 1 (Ka2) (Table 1).

It can be found from Table 1 that both 1 and 5 show very 
high affinities toward 6 at any pH, and compound 5 recognizes 
6 much more strongly than compound 1 at any pH. Secondly, the 
association constants between 5 and 6 increase with the increase 
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Some interesting observations can be extracted from Table 2 
and Fig. 3. The first observation is that the association of 
acetylcholine with 5 shows a strong pH dependence, while that 
with 1 is scarcely affected by pH. The association constant 
of acetylcholine with 5 increases by over 16 times, from 
(6.94 ± 2.95) × 104 M−1 to (1.13 ± 0.40) × 106 M−1, when the 
pH rises from 5.0 to 8.5, while these values with 1 only double 
in size. Secondly, compound 5 shows much greater affinities 
toward acetylcholine than 1 under the same conditions, and this 
difference becomes greater with the increase of pH, e.g. the ratio 
of Ka3 to Ka4 is 2.8 at pH 5.0, while it increases to 23 at pH 8.5.

The foregoing results can be rationalized if  the struc-
tural characteristics inherent in 5 are taken in account. The 
introduction of cyano groups makes 5 possess some unique 
features: firstly, the strongly electron-withdrawing cyano groups 
enable compound 5, as recently described by us,5 to have pKa1, 
pKa2 and pKa3 values in the physiological pH region. Thus, in 
the pH range of 5.0–8.5 compound 5 changes from neutral 
to trianionic species. The increased dissociation of 5 with pH 
causes the increase of electron density at the aromatic part in 
5. In contrast, compound 1 has pKa1 of  7.9 in aqueous media 
(1 : 4 water–methanol)11 and thus remains undissociated in the 
physiologically important pH regions examined here. There-
fore, the binding of acetylcholine (and also 6) to 5 exhibits a 
pH dependence, while the association of acetylcholine with 1 
is scarcely affected by pH. Secondly, the linearly aligned cyano 
groups deepen the concave electron-rich cavity and expand the 
conjugated aromatic p-systems of resorcin[4]arene, and thus 
5 can offer larger contact areas with the bound guest. These 
factors may contribute to the stronger molecular recognition 
of acetylcholine (and also 6) by 5 than by 1, through enhanced 
electrostatic and cation–p interactions.

In summary, tetracyanoresorcin[4]arene with four axial 
ethyl chains has been successfully synthesized. This compound 
shows very high and pH dependent affinities toward 
biologically important acetylcholine in physiological pH region. 
This result ensures the development of tetracyanoresorcin[4]-
arene-based tailored acetylcholine receptors whose affinities 
can be modulated by pH. The present results also indicate that 
simply modified resorcin[4]arenes can lead to some sophisti-
cated receptors with strong affinities toward biologically related 
cationic species.

of pH, while the binding of 6 to 1 is insensitive to pH. These 
features, together with the efficient fluorescence quenching by 
5, enable compound 6 to act as a probe for the pH dependent 
binding of acetylcholine to 5.

The properties of 5 as an acetylcholine receptor were 
examined by the fluorescence regeneration of 6 induced by the 
competitive binding of acetylcholine. Fig. 2 shows the plots of 
the relative fluorescence intensity (I/I0) of 6 against the concen-
tration of acetylcholine added at pH 8.0. It can be seen that the 
fluorescence intensities of 6 increase on the addition of acetyl-
choline and recover to their initial values after the addition of 
excess acetylcholine,10 indicating that acetylcholine can substi-
tute 6 bound to the cavity of 5. Though the binding constant 
of 6 with 5 was 23.5 times greater than with 1 at pH 8.0, the 
addition of acetylcholine of identical concentrations induced 
comparable fluorescence regeneration (Fig. 2), indicating that 
acetylcholine binds to 5 much more strongly than to 1. Analyses 
of I/I0 as a function of the added acetylcholine concentrations 
by nonlinear curve fitting methods9 afford the binding constants 
of acetylcholine with 5 (Ka3’s) and 1 (Ka4’s) (Table 2). The plots 
of Ka3 and Ka4 against pH are illustrated in Fig. 3.

Fig. 1 Relative fluorescence intensity of 6 (2.0 × 10−7 M) plotted 
against the concentrations of 1 and 5 in pH 8.0 aqueous solution 
buffered with 10 mM phosphate at room temperature, excitation 
430 nm, emission 570 nm.

Table 1 Association constants (M−1) of  6 with 1 (Ka2) and 5 (Ka1) at 
various pH’s

pH           Ka1                                      Ka2                                      Ka1/Ka2

5.0            (7.00 ± 2.51) × 106            (3.41 ± 0.71) × 106              2.1
5.5            (7.65 ± 1.85) × 106            (3.73 ± 0.20) × 106              2.1
6.0            (1.40 ± 0.79) × 107            (3.77 ± 0.23) × 106              3.7
6.5            (3.92 ± 1.13) × 107            (3.79 ± 0.50) × 106            10.3
7.0            (4.98 ± 2.41) × 107            (3.83 ± 0.46) × 106            13.0
7.5            (6.73 ± 3.59) × 107            (4.00 ± 0.57) × 106            16.8
8.0            (1.00 ± 0.60) × 108            (4.26 ± 1.56) × 106            23.5
8.5            (1.27 ± 0.10) × 108            (4.31 ± 0.50) × 106            29.5

Table 2 Association constants (M−1) of 1 (Ka4) and 5 (Ka3) with acetyl-
choline at various pH’s

pH           Ka3                                      Ka4                                      Ka3/Ka4

5.0            (6.94 ± 2.95) × 104            (2.45 ± 0.47) × 104              2.8
5.5            (7.46 ± 2.06) × 104            (2.51 ± 0.43) × 104              3.0
6.0            (3.08 ± 2.77) × 105            (2.43 ± 0.37) × 104            12.7
6.5            (4.38 ± 1.42) × 105            (2.72 ± 0.57) × 104            16.1
7.0            (6.22 ± 1.97) × 105            (2.64 ± 0.35) × 104            23.6
7.5            (9.20 ± 3.49) × 105            (3.88 ± 1.30) × 104            23.7
8.0            (1.01 ± 0.30) × 106            (4.22 ± 1.22) × 104            23.9
8.5            (1.13 ± 0.40) × 106            (4.92 ± 1.96) × 104            23.0

Fig. 2 Fluorescence regeneration of 6 (2.0 × 10−7 M) caused by 
the competitive binding of acetylcholine to 1 (8.0 × 10−7 M) and 
5 (8.0 × 10−7 M) in pH 8.0 aqueous solution buffered with 10 mM 
phosphate at room temperature, excitation 430 nm, emission 570 nm.

Fig. 3 Plot of the association constants of 1 (Ka4) and 5 (Ka3) with 
acetylcholine against pH in the physiological pH region.
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